
IEEE Wireless Communications • December 200292 1536-1284/02/$17.00 © 2002 IEEE

Link manager
(LM)

Sk

S1

Searching

Scheduler

Resource
pool

ackets

Bluetooth is expected
to be an important
basic constructing
component for Smart
Homes. In a Smart
Home environment,
many devices will be
portable and battery-
operated, making
power saving an
essential issue. The
authors study the
problem of managing
the low-power sniff
mode in Bluetooth.

SMART HOMES

INTRODUCTION
Computing and communication anytime, any-
where is a global trend in development today.
Ubiquitous computing has been made possible
by the advance of wireless communication tech-
nology and the availability of many lightweight
compact portable computing devices. This area
has attracted a lot of attention recently, and
various types of network architectures have
been proposed, such as wireless LANs, ad hoc
networks, sensor networks, and personal area
networks.

One emerging environment gaining more and

more attention is the smart home. The basic idea
behind smart homes is to provide various human-
friendly services with the goal of facilitating
human life. Typical home electronic appliances
will not be considered clumsy anymore. Instead,
they are capable of coordinating with each other
and adapting to surroundings. Such capabilities
are achieved by equipping these appliances with
embedded computing and communication
devices. There are diverse aspects and technolo-
gies involved in the development of Smart
Homes. One promising technology supported by
numerous organizations and companies is Blue-
tooth. With the design goals of compactness, low
cost, and low power, Bluetooth is expected to be
a promising basic constructing component of
smart homes.

This article focuses on Bluetooth [1], which is
characterized by indoor low-power low-complex-
ity short-range radio wireless communications
with a frequency-hopping time-division duplex
channel model. A master-slaves configuration
called a piconet is adopted. Readers can refer to
[2–4] for more general details of the Bluetooth
standard description.

Since low cost is one design goal of Blue-
tooth, a large number of widespread deploy-
ments of Bluetooth are expected. Within home
environments, the deployment could consist of
various portable devices. One essential issue for
almost all kinds of portable devices is power sav-
ing. Mobile devices have to be supported by bat-
teries, and without power they become useless.
Battery power is a limited resource, and it is
expected that battery technology is not likely to
progress as fast as computing and communica-
tion technologies do. Hence, lengthening the
lifetime of batteries in portable devices is an
important issue. Solutions for power saving can
be generally categorized into several approaches.

Transmission power control: In wireless com-
munication, transmission power has a strong
impact on bit error rate, transmission rate, and
inter-radio interference. These are typically con-
tradicting factors. Power control to reduce inter-
ference for ad hoc networks is addressed in [5].
Dynamically adjusting transmission powers of
mobile hosts in ad hoc networks to control net-
work topology, known as topology control, is
addressed in [6]. Increasing network throughput
by power adjustment for packet radio networks
is addressed in [7].

TING-YU LIN AND YU-CHEE TSENG, NATIONAL CHIAO-TUNG UNIVERSITY

ABSTRACT
Bluetooth is expected to be an important

basic constructing component of smart homes.
In a smart home environment, many devices will
be portable and battery-operated, making power
saving an essential issue. In this article we study
the problem of managing the low-power sniff
mode in Bluetooth, where a slave is allowed to
be awake only periodically. One challenging
problem is how to schedule each slave’s sniffing
period in a piconet so as to resolve the trade-off
between traffic and power-saving requirements,
to which we refer as the sniff-scheduling prob-
lem. We propose an adaptive protocol to dynam-
ically adjust each slave’s sniff parameters, with a
goal of catching the varying, and even asymmet-
ric, traffic patterns among the master and slaves.
Compared to existing works, our work is unique.
First, our scheduling considers multiple slaves
simultaneously. Existing work only considers
one slave, and different slaves are treated inde-
pendently. Second, our scheduling is more accu-
rate and dynamic in determining the
sniff-related parameters based on slaves’ traffic
patterns. Most work is restricted to a naive
exponential adjustment in sniff interval/sniff-
attempt window. Third, our proposal includes
the placement of sniff-attempt periods of sniffed
slaves on the time axis when multiple slaves are
involved. This issue is ignored by earlier work.
Extensive simulation results are presented.
Among many observations, one interesting
result is that with proper settings, our protocol
can save significant power while achieving high-
er network throughput than a naive always
active round-robin scheme.

AN ADAPTIVE SNIFF SCHEDULING SCHEME FOR
POWER SAVING IN BLUETOOTH

IEEE Wireless Communications • December 2002 93

Power-aware routing: Power-aware routing
protocols for ad hoc networks are discussed in
[8, 9].

Management of low-power modes: More and
more wireless devices can provide low-power
modes. IEEE 802.11 has a power-saving mode in
which a radio only needs to be awake periodical-
ly. HiperLAN allows the mobile host, which is in
power-saving mode, to define its own active peri-
od [10]. As for active hosts, they can save power
by turning off their equalizers according to the
transmission bit rate. Bluetooth provides three
low-power modes: sniff, hold, and park [1].

We study the management of low-power sniff
mode in Bluetooth to conserve power; thus, this
falls into the third category above. In sniff mode,
a slave’s listening activity is reduced. Slaves only
listen in specified time slots regularly spaced by
sniff intervals. One challenging problem is how
to schedule each slave’s sniffing period in a
piconet to balance the trade-off between traffic
and power-saving requirements, to which we
refer as the sniff scheduling problem.

In this article, an adaptive sniff scheduling
protocol is proposed to periodically adjust the
sniff parameters. An evaluator is used by each
master and its slaves to determine its traffic
pattern and sniff-related parameters. A sched-
uler is deployed on the master’s side to sched-
ule each slave’s sniffing period. Since each
slave’s sniffing period can be regarded as an
infinite sequence of time slots and multiple
slaves are considered in this article, we propose
a concept called resource pool (RP) to manage
the available/occupied time slots in the piconet.
The master periodically checks the needs of its
slaves by running the evaluator, and allocates
suitable slot resources from the RP for them.
On the other hand, slaves can exercise their
own evaluators and issue requests for slot
resources as well. Two scheduler policies are
proposed: Longest Sniff Interval First (LSIF)
and Shortest Sniff Interval First (SSIF). Simula-
tion results are presented to verify the effec-
tiveness of our protocol.

Compared to existing work, our work is
unique in the following senses. First, our
scheduling scheme considers multiple slaves
simultaneously. Existing work only considers one
slave, and different slaves are treated indepen-
dently. Second, our scheduling is more accurate
and dynamic in determining the sniff-related
parameters based on slaves’ traffic patterns.
Most work is restricted to a naive exponential
adjustment in sniff interval/sniff-attempt window.
Third, our proposal includes the placement of
sniff-attempt periods of sniffed slaves on the
time axis when multiple slaves are involved. This
issue is ignored by earlier work.

Related work includes [11–14]. In [12, 14],
the polling priorities of slaves are determined
based on their traffic loads; however, how to
combine this with the sniff mode is not
addressed. In [13] it is proposed to dynamically
adjust the sniff parameters according to a slave’s
slot utilization. In [11] a learning function is pro-
posed to determine the sniff interval. However,
the sniff interval is adjusted on a per-interval
basis, and thus the overhead of control messages
might be pretty high. Both [11, 13] suffer the

problems that only one single slave is considered
in an independent way, and the placement of
sniff-attempt windows is not addressed.

The rest of this article is organized as fol-
lows. Preliminaries are given in the next section,
followed by our sniff scheduling protocol. We
propose two policies for our scheduler. Simula-
tion results are then provided. Finally, we draw
conclusions.

PRELIMINARIES

BLUETOOTH TECHNOLOGY REVIEW

Bluetooth is a master-driven time-division duplex
short-range radio wireless system. The smallest
network unit is called a piconet, and has a mas-
ter-slaves configuration. A time slot in Bluetooth
is 625 µs. The master sends data to slaves in
even-numbered slots, while slaves send data to
the master in odd-numbered slots. A slave only
transmits packets after the master polls or sends
data to it.

According to the Bluetooth protocol stack
[1], on top of RF is the Bluetooth baseband,
which controls use of the radio. Four important
operational modes are supported by the base-
band: active, sniff, hold, and park. Active mode is
most energy-consuming, where a Bluetooth unit
is turned on most of the time. Sniff mode allows
a slave to go to sleep and only wake up at a spe-
cific time. In hold mode, a slave can temporarily
suspend supporting data packets on the current
channel; the capacity can be made free for other
things, such as scanning, paging, and inquiring.
While in hold mode, a unit can also attend other
piconets. Prior to entering hold mode, an agree-
ment should be reached between the master and
slave on hold duration. When a slave does not
want to participate in the piconet channel, but
still wants to remain synchronized, it can enter
park mode. The parked slave has to wake up
regularly to listen to the channel, to stay syn-
chronized or check broadcast messages.

On top of the baseband is the link manager
(LM), which is responsible for link configura-
tion and control, security functions, and power
management. The corresponding protocol is
called Link Manager Protocol (LMP). The Log-
ical Link Control and Adaptation Protocol
(L2CAP) provides connection-oriented and con-
nectionless datagram services to upper-layer
protocols. Two major functionalities of L2CAP
are protocol multiplexing, and segmentation and
reassembly (SAR).

The Service Discovery Protocol (SDP) defines
the means for users to discover which services are
available in their neighborhood and the charac-
teristics of these services. The RFCOMM proto-
col provides emulation of serial ports over L2CAP
to support many legacy applications based on
serial ports over Bluetooth without any modifica-
tions. Up to 60 serial ports can be emulated.

THE LOW-POWER SNIFF MODE
Our main focus, the power-saving issue of Blue-
tooth, is discussed in more detail in this section.
In active mode, the Bluetooth unit is turned on
most of the time to participate in send/receive
activities. An active slave listens in even slots

According to the
Bluetooth protocol

stack, on top of RF
is the Bluetooth

Baseband, which
controls the use of

the radio. Four
important operational
modes are supported

by the baseband:
active, sniff, hold,

and park.

IEEE Wireless Communications • December 200294

for packets. If the slave is not addressed in the
current packet, it may sleep until the next even
slot the master transmits. From the type indica-
tion of the packet, the slave can derive the
number of slots to be used by the master to
transmit the current packet. The addressed
slave will reply in the next odd slot after the
master’s transmission.

In the sniff mode, the slave’s listening activi-
ties are reduced to save energy. For a sniffed
slave, the time slots when the master can com-
municate to that slave are limited to some spe-
cific time slots. These so-called sniff-attempt slots
arrive periodically, as illustrated in Fig. 1. In the
Bluetooth specification, there are three parame-
ters specified for such sniff activity: Tsniff,
Nsniff_attempt, and Nsniff_timeout. Since Bluetooth
specification separates even and odd slots for
the master and slave transmissions, the values of
these sniff parameters are all based on slot pairs
(one even plus one odd slot). In every Tsniff slot
pair, the slave will wake up to listen to the mas-
ter for Nsniff_attempt consecutive (even) slots for
possible packets destined to it. After every
reception of a packet with a matching address,
the slave continues listening for Nsniff_timeout
more slots or for the remaining of the
Nsniff_attempt slot pairs, whichever is greater. In
this article, we call Tsniff the sniff interval and
Nsniff_attempt the active window.

The control packets exchanged between two
communicating LMs via LMP are termed
LMP_PDUs. There are four LMP_PDUs
involved in sniff mode management:
LMP_sniff_req, LMP_accepted, LMP_not_
accepted, and LMP_unsniff_req. These PDUs
are for making/rejecting/accepting requests and
returning to normal active mode. To enter sniff
mode, an LMP_sniff_req request packet can be
initiated by either a master or a slave carrying
the proposed parameters. Upon receipt of the
request, the receiver side can negotiate with the
other side on the related sniff parameters by
issuing another LMP_sniff_req request packet
carrying the suggested parameters. If an agree-
ment can be seen, an LMP_accepted packet is
used to place the slave into sniff mode. Other-
wise, an LMP_not_accepted packet is returned
with a reason code for rejection. Also, note that
the sniff parameters can be negotiated on a per-
master-slave basis.

Sniff mode can be ended by sending an
LMP_unsniff_req packet. The counterpart must
reply with an LMP_accepted packet. If this is

requested by the slave, it will enter active mode
after receiving LMP_accepted. If this is requested
by the master, the slave will enter active mode
immediately after receiving LMP_unsniff_req.

PROBLEM STATEMENT
Although the operations of sniff mode are given
in the Bluetooth specification, how to determine
the sniff-related parameters is left as an open
issue for the designers. One should dynamically
determine a proper set of sniff parameters for a
slave based on its traffic pattern to save as much
of its power as possible without incurring too
much delay in packet delivery. Furthermore,
multiple slaves could be in sniff mode at the
same time. How to schedule their active win-
dows on the time axis is a challenging problem
since these windows arrive periodically and may
extend, conceptually, to infinity on the time axis.
Overlapping of active windows is allowed but
undesirable. Collectively, we call this the sniff
scheduling problem.

Finally, we are aware of the possibility of
using hold or park mode for power saving. How-
ever, this article only considers sniff mode
because it can serve various types of traffic with
power saving in mind.

THE SNIFF SCHEDULING PROTOCOL

In this section we propose a protocol to exploit
the low-power sniff mode of Bluetooth. Because
of the master-driven centrally controlled archi-
tecture of Bluetooth, we will maintain an RP on
the master’s side. The sniff parameters of each
slave will be adjusted dynamically based on
many factors such as the slave’s traffic load, cur-
rent backlog, previous utilization of sniff slots,
and availability of the RP. The ultimate goal is
to save slaves’ power while keeping packet delays
as small as possible. Note that because of Blue-
tooth’s separation of even and odd slots, all cal-
culations refer to slot pairs unless stated
otherwise.

Figure 2 shows the architecture of our sniff
scheduling protocol in a piconet with K active
slaves, 1 ≤ K ≤ 7. On the master side, there are
three main entities: evaluator, scheduler, and
RP. The master periodically runs the evaluator
for each slave k, 1 ≤ k ≤ K, to evaluate its condi-
tion. If necessary, a value Sk, which is used to
reflect the estimated traffic load of slave k, is
generated and fed into the scheduler to readjust
this slave’s sniff parameters. The scheduler then
searches the RP to schedule a new set of sniff
parameters for the slave.

On the other hand, slaves also run their own
evaluators periodically. These distributed evalua-
tors will pass their desired Sk values to the mas-
ter via an LMP_sniff_req packet. The scheduler
then searches the RP, and arranges new sniff
parameters for them. In our protocol, when the
scheduler is unable to find suitable sniff parame-
ters for a slave, an LMP_unsniff_req packet will
be issued to invite it into active mode. This usu-
ally happens when the traffic load of the slave is
quite large. When the master finds it possible to
allocate a proper sniff scheduling for the slave, it
may bring the slave back to sniff mode again.

Since the low-power modes of Bluetooth are

� Figure 1. Sniff interval and active window of Bluetooth (darkened parts are
even slots).

Sniff interval
Tsniff slot pairs

Sleeping

Active window
Nsniff_attempt slot pairs

Active window
Nsniff_attempt slot pairs

IEEE Wireless Communications • December 2002 95

managed by the link manager (LM), our proto-
col should reside in the LM layer of each Blue-
tooth unit, monitoring the backlogs of the lower
baseband buffers and issuing proper sniff
scheduling packets. In this article we follow the
same assumption as in [12]: the master keeps
separate buffers in the baseband layer for its
slaves. Each buffer queues the data dedicated to
the corresponding slave. Below, we discuss our
design in more detail.

THE EVALUATOR
The purpose of the evaluator is to measure how
efficiently or inefficiently a slave uses the sniff-
attempt slots assigned to it and, if necessary, to trig-
ger the scheduler to readjust its sniff parameters.

The fundamental parameters are explained
below. First, we define (Tk, Nk, Ok) as the cur-
rent sniff parameters (sniff interval, active win-
dow size, and offset, respectively) associated
with slave k. For each slave k, we have to mea-
sure its Uk. This is a ratio between (including) 0
and 1, indicating how many slot pairs of the
sniff-attempt slots are used effectively for real
data communication under the current setting
for slave k. Also, we use Bk to denote the buffer
backlog for slave k (i.e., the number of packets
currently queued in the local baseband buffer).
By Uk and Bk, we derive a weighted value Wk to
measure the current requirement of slave k:

Wk = α Uk + (1 – α)Bk/Bmax, (1)

where Bmax is the maximum buffer space, and α
is a constant between 0 and 1 to differentiate the
importance of Uk and Bk. The resulting Wk will
be tested against the condition rlb < Wk < rub,
where rlb and rub are predefined tolerable lower
bound and upper bound, respectively, of Wk. If
this condition is violated, the master will be trig-
gered to readjust slave k’s current sniff parame-
ters; otherwise, no readjustment is needed.

Based on Wk, our objective is to determine
the desired slot occupancy Sk of slave k, which
represents the expected ratio of the new Nk to
the new Tk:

Sk = (Nk/Tk) × Wk/δ. (2)

Intuitively, Nk/Tk is slave k’s current slot occu-

pancy. Multiplying this ratio by Wk gives the slot
occupancy ratio expected to be assigned to this
slave. The factor δ is a positive constant below 1
to enlarge the expected ratio to tolerate a cer-
tain level of inaccuracy in our estimation.

Note that a minor logic flaw we intentionally
omit in the above discussion (for ease of presen-
tation) is that when the slave is in active mode, it
has no sniff parameters, so the ratio Nk/Tk
becomes meaningless. In this case we simply
replace this ratio by the recent slot occupancy of
slave k (with all slots as the denominator). The
rest is all the same.

THE RESOURCE POOL
The available sniff-attempt slots that can be allo-
cated to slaves are managed by the RP on the
master side. One may regard the sniff-attempt
slots of a slave as a periodical infinite sequence.
However, we need an efficient finite data struc-
ture for representation.

In this section we propose to use a two-
dimensional d1 × d2 matrix M for the representa-
tion. The basic idea is as follows. We group
(infinite) slot pairs appearing with period d1 ⋅ d2
into one set. For p = 0..d1 ⋅ d2 – 1, define

Gp = {p + q ⋅ d1 ⋅ d2q is any
non-negative integer}.

Each entry in matrix M is used to represent the
availability of one such slot group, so we define,
for i = 0..d1 – 1, j = 0..d2 – 1,

(3)

Note that variables d1 and d2 are adjustable
parameters. The value of d1 ⋅ d2 should be large
enough to capture the behavior of those slaves
that have very low traffic load and would like to
spend very low energy on sniff-attempts. Also
note that d1 ⋅ d2 indicates the maximum allowed
sniff interval. To facilitate exponential adjust-
ment of sniff intervals, we configure d1 to be
power of 2, denoted 2u, where u is an non-nega-
tive integer. Besides, d2 is replaced with T, which
indicates the minimum allowable sniff interval.

M i j
G

G
i d j

i d j
[,] .=






⋅ +

⋅ +

0

1
2

2

 if is free

 if is busy

� Figure 2. The architecture of our sniff scheduling protocol.

LMSlave 2

Link manager
(LM)

Master

Sk

S1

S2

Searching

S2

S1

Sk

Evaluator
for slave2

Evaluator
for slave1

Evaluator
for slavek

SchedulerEvaluator

LMSlave 1 Evaluator

LMSlave k Evaluator Resource
pool

Sniff-related LMP packets

Since the low-power
modes of Bluetooth

are managed by the
link manager, our

protocol should
reside in the LM

layer of each
Bluetooth unit,
monitoring the

backlogs of the lower
baseband buffers and

issuing proper
sniff-scheduling

packets.

IEEE Wireless Communications • December 200296

Different values of u and T will provide different
levels of flexibility, as shown later. Table 1 plots
several examples of M with size 8 × 15.

The 2D matrix M can provide us much flexi-
bility in managing periodical time slots. We can
manipulate both sniff intervals and active win-
dows of sniffing slaves easily. Two groups that
are adjacent in M can be framed together to

double the active window. Two groups spaced by
a certain distance in the matrix can be grouped
together too to divide the sniff interval by half.
This can be extended to the combination of
more groups easily. Reversibly, we may decrease
the active window or increase the sniff interval
of a slave to reduce its power consumption by
partitioning groups. For example, given the state
in Table 1a, if a slave’s packet mean arrival rate
is 16/120, we show four possible ways (b, c, d, e)
to arrange the slave’s sniff-attempt slots. Table
1b indicates that the slave is awake every 120
slot pairs, each time lasting for 16 slot pairs.
Table 3c shows that it is awake every 60 slot
pairs, each time lasting for 8 slot pairs. Table 1d
means it is awake every 30 slot pairs, each time
lasting for 4 slot pairs. Table 1e means it is
awake every 15 slots pairs, each time lasting for
2 slot pairs.

With such a formulation, the resource man-
agement problem becomes one of allocating
proper entries in matrix M. Later, we will pro-
pose two searching policies for this problem.

LMP_PDU FLOWS
In the Bluetooth specification, both master and
slaves can initiate a sniffing request. In our pro-
tocol, we also allow a sniffing request to be mas-
ter- or slave-activated. This section discusses the
related LMP_PDU exchanges. Recall the calcu-
lation of Wk for slave k. All the following discus-
sion is triggered by violating the constraint rlb <
Wk < rub.

Figure 3 shows four possible master-activated
scenarios. The first one demonstrates the master
proposing a new set of sniff parameters (Ok′, Tk′,
Nk′) for slave k. In response, the slave runs its
evaluator to determine its local Sk. If the
assigned slot occupancy derived from Nk′/Tk′ is
not less than Sk, an LMP_accepted can be
returned.

The second scenario demonstrates that slave
k disagrees on the assigned parameter, so an
LMP_sniff_req is returned. However, note that
since slave k does not know the status of the RP,
we actually intend to return its estimated Sk to
the scheduler for an arrangement. Since Sk is a
ratio between 0 and 1, we simply use the two
fields Tsniff and Nsniff_attempt in LMP_sniff_req to
carry two values, Tk′′ and Nk′′, respectively, such
that Nk′′′/Tk′′ ≈ Sk. The scheduler then tries to
allocate a new set of sniff parameters based on
Nk′′/Tk′′ for slave k. In response, the slave issues
an LMP_accepted.

The third scenario is similar to the second
one, but the master fails to allocate a large
enough active window from its RP (probably
because matrix M is too crowded or fragment-
ed). In this case, the master will request the
slave to unsniff itself.

The fourth scenario is where, from the esti-
mated Sk, the master directly finds it has difficul-
ty allocating a large enough active window from
its RP, so an unsniff request is directly sent to
the slave.

Figure 4 shows slave-activated negotiation.
This is similar to the aforementioned second and
third scenarios, but it is triggered by finding vio-
lation of the condition rlb < Wk < rub on the
slave’s side. Again, since the slave does not know

� Table 1. Example: Initial state of an 8 × 15 matrix M and feasible assignments
in matrix M (dark) for a slot occupancy of 16/120.

(a)

17 0 0 0 0 1 1 1 1 1 1 0 0 0 0
16 1 1 0 0 0 0 0 0 0 1 1 1 1 1
05 0 0 0 0 0 0 0 1 1 1 1 1 1 0
14

Ro
w 1 1 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 1 1 1 1 1 1 0 0 0 0
12 1 1 0 0 0 0 0 0 0 1 1 1 1 1
01 0 0 0 0 0 0 0 1 1 1 1 1 1 0
10 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Column

(b)

17 0 0 0 0 1 1 1 1 1 1 0 0 0 0
16 1 1 0 0 0 0 0 0 0 1 1 1 1 1
05 0 0 0 0 0 0 0 1 1 1 1 1 1 0
14

Ro
w 1 1 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 1 1 1 1 1 1 0 0 0 0
12 1 1 0 0 0 0 0 0 0 1 1 1 1 1
11 1 1 1 0 0 0 0 1 1 1 1 1 1 0
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Column

(c)

17 0 0 0 0 1 1 1 1 1 1 0 0 0 0
16 1 1 0 0 0 0 0 0 0 1 1 1 1 1
05 0 0 0 0 0 0 0 1 1 1 1 1 1 0
14

Ro
w 1 1 1 1 1 1 1 1 1 1 0 0 0 0

13 0 0 0 0 1 1 1 1 1 1 0 0 0 0
12 1 1 0 0 0 0 0 0 0 1 1 1 1 1
01 0 0 0 0 0 0 0 1 1 1 1 1 1 0
10 1 1 1 1 1 1 1 1 1 1 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Column

(d)

17 0 0 0 0 1 1 1 1 1 1 0 0 0 0
16 1 1 1 1 1 1 0 0 0 1 1 1 1 1
05 0 0 0 0 0 0 0 1 1 1 1 1 1 0
14

Ro
w 1 1 1 1 1 1 0 0 0 0 0 0 0 0

13 0 0 0 0 1 1 1 1 1 1 0 0 0 0
12 1 1 1 1 1 1 0 0 0 1 1 1 1 1
01 0 0 0 0 0 0 0 1 1 1 1 1 1 0
10 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Column

(e)

17 0 0 1 1 1 1 1 1 1 1 0 0 0 0
16 1 1 1 1 0 0 0 0 0 1 1 1 1 1
05 0 0 1 1 0 0 0 1 1 1 1 1 1 0
14

Ro
w 1 1 1 1 0 0 0 0 0 0 0 0 0 0

13 0 0 1 1 1 1 1 1 1 1 0 0 0 0
12 1 1 1 1 0 0 0 0 0 1 1 1 1 1
01 0 0 1 1 0 0 0 1 1 1 1 1 1 0
10 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Column

IEEE Wireless Communications • December 2002 97

the status of the RP, we use the two fields Tsniff
and Nsniff_attempt in LMP_sniff_req to convey the
desired Sk to the master. It then follows with an
LMP_sniff_req containing the new sniff parame-
ters or an LMP_unsniff_req packet, depending
on the crowdedness of the RP.

SCHEDULING POLICIES FOR THE
RESOURCE POOL

The job of the scheduler is to take an input Sk
and determine a suitable set of sniff parameters
(denoted Ok′, Tk′, and Nk′ below) for slave k.
These parameters in fact represent a set of slot
groups in matrix M. Before making the alloca-
tion, the old occupancy by this slave on M should
be released, which is an easy job. In the follow-
ing, we propose two policies for searching M,
named LSIF and SSIF.

LONGEST SNIFF INTERVAL FIRST

In the LSIF policy, we search matrix M starting
from the longest sniff interval, which is 2u ⋅ T. If
the search fails, we divide the interval by 2,
which is 2u–1 ⋅ T, and do the search again. If the
search also fails, we further use the interval 2u–2

⋅ T to do the search. The search stops once a sat-
isfactory set of slot groups is found. This is
repeated until the shortest interval T is tried, in
which case we will bring the slave into active
mode, as discussed earlier.

Below, we discuss the detailed steps when we
search matrix M with a sniff interval 2p ⋅ T,
where 0 ≤ p ≤ u. Since the matrix is of size 2u ×
T, we will “fold” M into a smaller matrix of size
2p × T. Specifically, we partition M horizontally
and evenly into 2u–p pieces, each of size 2p × T.
Then we fold all pieces together by executing a
bitwise OR operator. The meaning of OR is to

� Figure 3. Scenarios of master-activated sniff parameter negotiation.

Master

Scenario 3

Scenario 4

LMP_sniff_req
(Ok',Tk',Nk')

LMP_unsniff-req

LMP_sniff_req
(0,Tk",Nk")

LMP_accepted

Evaluate Sk.
Determine the new
sniff parameters.

Based on Nk"/Tk",
determine the new
sniff parameters.

If Sk > Nk'/Tk'
then Nk"/Tk" = Sk

Slave k must accept
unsniff request

Scenario 2

LMP_sniff_req
(Ok',Tk',Nk')

LMP_sniff-req
(Ok',Tk',Nk')

LMP_sniff_req
(0,Tk",Nk")

LMP_accepted

Evaluate Sk.
Determine the new
sniff parameters.

Based on Nk"/Tk",
determine the new
sniff parameters.

If Sk > Nk'/Tk'
then Nk"/Tk" = Sk

Slave k must accept these
new sniff parameters

LMP_unsniff-req

LMP_accepted

Evaluate Sk.
Determine the new
sniff parameters.

Slave k must accept
unsniff request

Slave k

Scenario 1
LMP_sniff_req

(Ok',Tk',Nk')

LMP_accepted

Evaluate Sk.
Determine the new
sniff parameters.

Evaluate Sk.
If Sk ≤ Nk'/Tk'

The available
sniff-attempt slots

that can be allocated
to slaves are

managed by the
resource pool at the

master side. One
may regard the

sniff-attempt slots of
a slave as a

periodical, infinite
sequence. However,

we need an efficient,
finite data structure

for the
representation.

IEEE Wireless Communications • December 200298

ensure that each piece of submatrices has a free
entry. Let the folded matrix be M′. We then
search M′ sequentially for possible existence of q
consecutive free entries (with value 0), where

The reason we adopt a floor function instead of
a ceiling function here is that the desired slot
occupancy has been enlarged in our calculation
(by dividing by a δ < 1). Once this search suc-
ceeds, we can return Tk′ = 2p ⋅ T, Nk′ = q, and Ok′
= i ⋅ T + j, where Ok′ is the offset indicating the
starting point, say M′[i, j], of the q consecutive
free entries in M′.

An example is in Table 2, given T = 15, u =
3, rlb = 0.2, rub = 0.8, and δ = 0.8. Assuming
that there are K = 5 slaves, in the beginning
round 0 all slaves share 1/5 of slot groups. In
round 1, the estimated W2 of slave 2 decrease to
0.18. So we release its occupancy on M and allo-
cate a new space for it. In the table, the ratio q/t
means that the target number of 0′s on M′ is q
and the searched sniff interval is t. For example,
in round 1 we succeed in ratio 2/60 (underlined),
which means we find two consecutive 0s when
the searched sniff interval is 60. Similarly, in
rounds 2 and 3 we succeed in ratios 3/120 and
6/30, respectively.

SHORTEST SNIFF INTERVAL FIRST
The SSIF policy only differs from the LSIF pol-
icy in that it searches starting from smaller sniff
intervals and gradually increasing the searched
interval. Specifically, we will start from the
shortest sniff interval T. If the search fails, we
double the interval and repeat the search, until
the longest interval 2u ⋅ T is tried. The intuition
is that although the slot occupancy may remain

the same, with a smaller sniff interval the
buffers for this slave may experience less chance
of overflow. Hence, SSIF has potential to
improve network throughput. However, the cost
is put on the energy, since the slave needs to
wake up more frequently. An example of this
policy is in Table 3 (with all inputs the same as
in Table 2).

One minor detail we intentionally omitted in
the above discussion is that when the slave’s traf-
fic load is very low, it is possible that the value
of q is always less than 1 throughout the search-
ing. In this case, we simply take the sniff interval
2p ⋅ T such that Sk ⋅ 2p ⋅ T is closest to 1 to do
the search again by enforcing q = 1.

SIMULATION RESULTS

We have developed a simulator to verify the
effectiveness of our protocol. The goal is to
observe the interaction between the two seem-
ingly contradicting factors network throughput
and power consumption. We simulated a single
piconet with six Bluetooth units (one master
and five slaves). The programming environment
was GNU C++ on UNIX SunOS 5.7. No mobil-
ity was modeled (i.e., no device joining or leav-
ing the piconet during the simulation process).
The power consumption of the master was not a
concern since we assume it has plug-in electrici-
ty. Each slave might switch between active and
sniff modes, and we didn’t consider other
modes, such as hold and park. When switching
modes or changing sniff parameters, hosts send
control packets as described in Figs. 3 and 4.
For each slave there is a separate buffer queue
on the master side. Physical transmission prob-
lems such as fading and interference were not
taken into account.

Our power model is derived based on experi-

q
S T

S Tk
u

u p k
p= ⋅ ⋅











= ⋅ ⋅



−

2

2
2 .

� Figure 4. Scenarios of slave-activated sniff parameter negotiation.

Scenario 1

LMP_sniff_req
(0,Tk",Nk")

Master

LMP_accepted

LMP_sniff_req
(Ok,Tk',Nk')

Evaluate Sk.
If Sk > Nk"/Tk"

then Nk"/Tk" = Sk.
Based on Nk"/Tk",

determine the new sniff
parameters.

Evaluate Sk.
Let Nk"/Tk" = Sk

Slave k must accept these
new sniff parameters

Scenario 2

LMP_sniff_req
(0,Tk",Nk")

LMP_accepted

LMP_unsniff_req

Evaluate Sk.
If Sk > Nk"/Tk"

then Nk"/Tk" = Sk.
Based on Nk"/Tk",

determine the new sniff
parameters.

Evaluate Sk.
Let Nk"/Tk" = Sk

Slave k must accept
unsniff request

Slave k
We have developed
a simulator to verify
the effectiveness of
our protocol. The
goal is to observe
the interaction
between the two
seemingly
contradicting factors:
network throughput
and power
consumption.

IEEE Wireless Communications • December 2002 99

ences in Lucent WaveLAN cards and Bluetooth
[13], which is summarized below. It takes half a
unit of power for a Bluetooth device to receive a
one-slot packet, and one unit to transmit a one-
slot packet. Voice traffic is not simulated (but
we can simply reserve 1s in matrix M spaced by
regular distances to model such traffic). When a
slave hears packets dedicated to others, a lower
amount of power is required since it can turn off
its receiver after monitoring the packet header.
In this case, it only consumes 1/6 of receiving
power, which is 0.083 units. Bluetooth also
defines some short packets, such as ACK and
NULL (to respond to a poll with no data). We
assume the power consumption for delivering
such packets to be 1/6 of the transmission power,
which is 0.167 units.

In addition to our LSIF and SSIF policies,
three other approaches are simulated for com-
parison. The first one is called Always Active
(AA), where we enforce all slaves to always stay
in active mode. The master polls its slaves using
a round-robin policy. Note that, while naive, AA
is used here only as a reference point. The sec-
ond approach is called Always-Sniff-with-Vary-
ing-Sniff-Interval (AS_VSI), where we enforce
slaves to always stay in sniff mode, but the active
window must remain constant. When a slave’s
slot utilization ≤ rlb, its sniff interval will be dou-
bled. On the other hand, its sniff interval will be
cut in half if slot utilization ≥ rub. The smallest
sniff interval is T, while the largest possible is 2u

⋅ T. The third approach is called Always-Sniff-
with-Varying-Active-Window (AS_VAW), where
we enforce the sniff interval to be constant. The
active window will be doubled when slot utiliza-
tion ≥ rub, but cut in half when ≤ rlb. The lower
and upper bounds of active window size are 1
and T/5, respectively.

Below, we divide our presentation into two
parts. The next section shows the results under
fixed traffic patterns, the following section under
varying traffic patterns. The latter is intended to
model real system traffic and demonstrate the
flexibility of our protocol in catching such
dynamics. Through the presentation we shall
provide a guideline for choosing proper parame-
ters for our protocol. In our simulation we always
adopt rlb = 0.3 and rub = 0.7. Each simulation
run lasts for 100,000 slot pairs.

FIXED TRAFFIC LOAD
Here we assume a Poisson process with packet
arrival rate λ = 0.2 (packets per time slot) for
each buffer (on both the master and slave sides).
Figure 5 illustrates the power consumption and
network throughput against buffer size Bmax. We
observe that with enough buffer space (≥ 50),
all five approaches can achieve high throughput
close to 0.99. This is because fixed traffic loads
are easy to catch. Compared to AA, the other
four schemes consume significantly less power.

These observations motivate us to derive the
following simulations, where traffic is nonuni-
form, to reveal the strength of our proposals.

VARYING TRAFFIC LOAD
Here we adopt a variable traffic model similar to
that proposed in [14]. Packets still arrive by the
Poisson process, but at different rates. Two types

of traffic patterns will be explored. The first is
denoted TypeI(λM–λS), which means the arrival
rate on the master’s side is λM, and that on the
slave’s side is λS. The second is denoted
TypeII(λA–λB), which means there are two kinds
of arrival rates, λA and λB, for both the master
and the slave. The master and the slave change
states between rates λA and λB independently,
and the transition probability from one rate to
the other is 0.01 in both directions.

We first investigate the effect of weight α on our
LSIF and SSIF schemes. Figure 6a plots the net-
work throughput against α, where five slaves with
traffic patterns TypeI(0.2–0.2), TypeI(0.19–0.01),
TypeI(0.01–0.19), TypeII(0.19–0.01), and
TypeII(0.19–0.01) are simulated. It indicates that

� Table 2. Searching example of LSIF.

Round0 N1/T1=N2/T2=N3/T3=N4/T4=N5/T5=3/15

S1 S1 S1 S2 S2 S2 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S2 S2 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S2 S2 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S2 S2 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S2 S2 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S2 S2 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S2 S2 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S2 S2 S3 S3 S3 S4 S4 S4 S5 S5 S5

Round1 W2=0.18<rlb⇒S2=[(3/15)*0.18]/0.8=0.045
0.045=5/120=2/60=1/30=0/15⇒(Ok',Tk',Nk')=3,60,2)

S1 S1 S1 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S2 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S2 S3 S3 S3 S4 S4 S4 S5 S5 S5

Round2 W3=0.11<rlb⇒S3=[(3/15)*0.11]/0.8=0.028
0.028=3/120=1/60=0/30=0/15⇒(Ok',Tk',Nk')=(5,120,3)

S1 S1 S1 S4 S4 S4 S5 S5 S5
S1 S1 S1 S4 S4 S4 S5 S5 S5
S1 S1 S1 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S2 S4 S4 S4 S5 S5 S5
S1 S1 S1 S4 S4 S4 S5 S5 S5
S1 S1 S1 S4 S4 S4 S5 S5 S5
S1 S1 S1 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S2 S3S3 S3 S4 S4 S4 S5 S5 S5

Round3 W4=0.9>rlb⇒S4=[(3/15)*0.9]/0.8=0.23
0.23=27/120=13/60=6/30=3/15⇒(Ok',Tk',Nk')=(18,30,6)

S1 S1 S1 S5 S5 S5
S1 S1 S1 S5 S5 S5
S1 S1 S1 S5 S5 S5
S1 S1 S1 S2 S2 S5 S5 S5
S1 S1 S1 S5 S5 S5
S1 S1 S1 S5 S5 S5
S1 S1 S1 S5 S5 S5
S1 S1 S1 S2 S2 S3S3 S3 S5 S5 S5

S4 S4 S4 S4 S4 S4

S4 S4 S4 S4 S4 S4

S4 S4 S4 S4 S4 S4

S4 S4 S4 S4 S4 S4

IEEE Wireless Communications • December 2002100

the throughput can be consistently improved as α
increases, until α ≤ 0.7. At α = 0.0, LSIF and
SSIF give the worst throughput of all. The reason
is that the evaluating metric is all based on buffer
information when α = 0.0, which is unfair. As a
result, the assigned sniff-attempt slots are unable
to handle future traffic well, thus degrading per-
formance. After α > 0.7, the throughput starts to
degrade as α grows. However, even when α = 1.0,
our LSIF and SSIF still outperform the other
three schemes. Thus, a value between 0.6 and 0.7
for α could be the best choice.

The above simulation in fact reveals two
interesting phenomena. First, the slot utilization
factor alone cannot predict the traffic well. One
should take both slot utilization and buffer back-
log information to predict future traffic. Second,

and much to our surprise, our LSIF and SSIF
schemes can even provide better network
throughput than a naive AA round-robin scheme
as α is properly set. The reason is that, in the
AA case, the master wastes much time polling
slaves with no backlogs, resulting in reduced
throughput. This indicates a prospective direc-
tion in which one can save power and improve
network throughput at the same time (which are
contradicting factors by intuition).

Figure 6b illustrates the impact of weight δ
on LSIF and SSIF, with α = 0.7 and the same
traffic pattern as above. It shows that before δ ≤
0.6, the throughput can be improved as δ grows.
Recall that δ is a factor to enlarge the expected
sniff-attempt slots to tolerate a certain level of
inaccuracy in our estimation. With a too small
value (e.g., δ = 0.1), LSIF and SSIF will degen-
erate into the AA scheme, since slaves can hard-
ly obtain such a large slot occupancy. As a result,
all slaves may remain active most of the time.
This also violates our goal of conserving power.
After δ > 0.6, the throughput starts to decline as
δ increases. After δ > 0.8, our throughput falls
behind that of the AA scheme. This is because
our prediction is too conservative to catch the
dynamics of variable traffic. Thus, a reasonable
value for δ would be between 0.5. and 0.7.

Also with the same traffic pattern, in Fig. 7a,
we study network throughput with different val-
ues of u, which controls the largest possible sniff
interval. For both LSIF and SSIF, it shows that
the throughput remains at around the same level
when u = 0, 1 and 2, but decreases as u is larger.
With u = 0, there is only one sniff interval avail-
able, which is T. With u = 1 and 2, there are two
and three sniff intervals available, respectively. A
larger sniff interval means that the slave needs
to switch modes less frequently, which is more
favorable. Based on these considerations, one
may choose a proper value of u to use.

One may note that in the previous simula-
tion, the advantage of using our 2D matrix M is
not well justified. When u = 0, M degenerates to
a 1D matrix; so why one should need a 2D M
remains a question. The reason is that we have
adopted T = 100. Since the lowest traffic load
we may inject for each entity is 0.01, a sniff
interval of T = 100 and active window of 1 can
properly catch such traffic without much waste.
To justify this point, we have simulated hosts
with very low traffic loads. We have conducted
another experiment with five slaves having the
following traffic patterns: TypeI(0.2–0.2),
TypeI(0.001–0.001), TypeI(0.002–0.002),
TypeII(0.002–0.005), and TypeII(0.002–0.005).
The result is in Fig. 7b. It indicates that the
throughput can be improved as u increases, until
u ≤ 4. Before u < 2, the throughput of LSIF and
SSIF is worse than AA. This phenomenon is due
to slot waste caused by sniff intervals that are
too short. (For example, to handle a low arrival
rate of 0.002, the scheduler should reserve one
out of every 500 slots in average. When u is set
too small, say u < 2, the scheduler will reserve
too much resource for such slaves. Therefore,
both network throughput and power consump-
tion might get hurt.) As mentioned earlier, the
value of 2u ⋅ T should be large enough to capture
the behavior of those slaves that have very low� Table 3. Searching example of SSIF.

Round0 N1/T1=N2/T2=N3/T3=N4/T4=N5/T5=3/15

S1 S1 S1 S2 S2 S2 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S2 S2 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S2 S2 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S2 S2 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S2 S2 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S2 S2 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S2 S2 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S2 S2 S3 S3 S3 S4 S4 S4 S5 S5 S5

Round3 W4=0.9>rlb⇒S4=[(3/15)*0.9]/0.8=0.23
0.23=27/120=13/60=6/30=3/15⇒(Ok',Tk',Nk')=(5,15,3)

S1 S1 S1 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S4 S4 S4 S5 S5 S5
S1 S1 S1 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S4 S4 S4 S5 S5 S5
S1 S1 S1 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S3 S4 S4 S4 S5 S5 S5

Round2 W3=0.11<rlb⇒S3=[(3/15)*0.11]/0.8=0.028
0.028=3/120=1/60=0/30=0/15⇒(Ok',Tk',Nk')=(4,60,1)

S1 S1 S1 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S4 S4 S4 S5 S5 S5
S1 S1 S1 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S4 S4 S4 S5 S5 S5
S1 S1 S1 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S3 S4 S4 S4 S5 S5 S5

Round1 W2=0.18<rlb⇒S2=[(3/15)*0.18]/0.8=0.045
0.045=5/120=2/60=1/30=0/15⇒(Ok',Tk',Nk')=(3,30,1)

S1 S1 S1 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S3 S3 S3 S4 S4 S4 S5 S5 S5
S1 S1 S1 S2 S3 S3 S3 S4 S4 S4 S5 S5 S5

IEEE Wireless Communications • December 2002 101

traffic load. In Fig. 7b, a value of u = 4 will per-
form the best. This justifies that our 2D matrix
representation of M is flexible enough to sched-
ule sniffing slots for hosts with both high and
very low traffic loads.

In Fig. 8a, we investigate the effect of T,
which represents the smallest possible sniff
interval, under the traffic patterns of
TypeI(0.2–0.2), TypeI(0.19–0.01), TypeI(0.01–0.19),

TypeII(0.19–0.01), and TypeII(0.19–0.01). It
shows that the throughput of LSIF and SSIF will
slightly decrease as T grows, so a T between 50
and 100 will be proper. The reason for the degra-
dation in throughput is that we activate the eval-
uator based on the value of T. A larger T will
trigger the protocol to reevaluate its traffic load
less frequently. The inaccuracy in load estima-
tion will cause slot waste. We believe this prob-

� Figure 5. The effect of Bmax under fixed traffic load.

Buffer size Bmax

T = 100, u = 2, α = 0.7, δ = 0.9, with fixed traffic λ = 0.2,
and 5 slaves in the piconet

15010
85,000

145,000

Po
w

er
 c

on
su

m
pt

io
n

165,000

185,000

205,000

225,000

105,000

125,000

13011090

(a) (b)

705030 170

AA
AS_VSI
AS_VAW
LSIF
SSIF

Buffer size Bmax

T = 100, u = 2, α = 0.7, δ = 0.9, with fixed traffic λ = 0.2,
and 5 slaves in the piconet

15010
0.5

Th
ro

ug
hp

ut
(%

 s
lo

ts
 u

se
d)

0.8

0.9

1.0

0.6

0.7

13011090705030 170

AA
AS_VSI
AS_VAW
LSIF
SSIF

� Figure 6. The effect of a) α and b) δ on LSIF and SSIF under varying traffic load.

Weight α for computing Wk

T = 100, u = 2, δ = 0.5, Bmax = 45, with varying traffic,
and 5 slaves in the piconet

(a)

0.9 1.00.0
0.20

0.30

Th
ro

ug
hp

ut
(%

 s
lo

ts
 u

se
d)

0.40

0.50

0.60

0.70

0.80

0.80.70.60.50.40.30.20.1

AA
AS_VSI
AS_VAW
LSIF
SSIF

Weight δ for computing Sk

T = 100, u = 2, α = 0.7, Bmax = 45, with varying traffic,
and 5 slaves in the piconet

(b)

0.9 1.00.0
0.20

0.30

Th
ro

ug
hp

ut
(%

 s
lo

ts
 u

se
d)

0.40

0.50

0.60

0.70

0.80

0.80.70.60.50.40.30.20.1

AA
AS_VSI
AS_VAW
LSIF
SSIF

� Figure 7. The effect of u on LSIF and SSIF under a) varying traffic and b) very low traffic load.

Sniff interval upper bound u

T = 100, α = 0.7, δ = 0.5, Bmax = 45, with varying traffic,
and 5 slaves in the piconet

(a)

40
0.20

0.30

Th
ro

ug
hp

ut
(%

 s
lo

ts
 u

se
d)

0.40

0.50

0.60

0.70

0.80

321

AA
AS_VSI
AS_VAW
LSIF
SSIF

Sniff interval upper bound u

T = 100, α = 0.7, δ = 0.5, Bmax = 45, with very low traffic,
and 5 slaves in the piconet

(b)

50
0.20

0.30

Th
ro

ug
hp

ut
(%

 s
lo

ts
 u

se
d)

0.40

0.50

0.60

0.70

0.80

3 421

AA
AS_VSI
AS_VAW
LSIF
SSIF

IEEE Wireless Communications • December 2002102

lem can be fixed by using a different rule to trig-
ger our evaluators, which will be directed to
future research.

Another experiment to investigate the impact
of T is in Fig. 8b, where we try low traffic pat-
terns: TypeI(0.2–0.2), TypeI(0.001–0.001),
TypeI(0.002–0.002), TypeII(0.002–0.005), and
TypeII(0.002–0.005). Similar to the earlier
observations, lower traffic loads require larger
2u ⋅ T. This is why we see continuous improve-
ment before T ≤ 400. Once T is too large, our
evaluators will react to traffic changes too slow-
ly, causing degradation in throughput. The
results from Figs. 8a and 8b suggest T between
100 and 200.

In Fig. 9, we set our parameters as recom-
mended above and look at the impact of buffer
spaces, Bmax. We observe both power consump-
tion and network throughput against different
buffer spaces. It shows that the throughput
climbs as Bmax increases, up to Bmax = 50. Once
Bmax ≥ 50, the throughput remains almost the
same. Thus, a buffer space between 30 and 50
is proper. With Bmax ≈ 30, LSIF and SSIF
increase system throughput by around 16.7 per-
cent compared to AA, while reducing power
consumption by around 37.8 percent compared
to AA.

CONCLUSIONS
We propose an adaptive and efficient protocol
for managing the low-power sniff mode in Blue-
tooth. Two essential parts of our protocol are
the evaluator and scheduler, which are respon-
sible for measuring how well slaves utilize their
sniff-attempt slots and arranging the sniff
parameters for slaves in the sniff mode. A new
representation based on a two-dimensional
matrix is proposed to maintain slaves’ sniff-
attempt slots, which are conceptually infinite
sequences of periodical slots. Two searching
strategies, Longest Sniff Interval First and
Shortest Sniff Interval First, are proposed to
look for available sniff-attempt slots in the two-
dimensional matrix. Our simulation results indi-
cate that, with proper settings and buffer
spaces, the protocol can potentially improve
network throughput, while reducing power con-
sumption, over a naive always active round-
robin protocol.

ACKNOWLEDGMENTS
Y.-C. Tseng would like to thank the Lee and MTI
Center for Networking Research at NCTU, the
Ministry of Education (contract nos. 89-H-FA07-
1-4 and 89-E-FA04-1-4), and the National Science

� Figure 8. The effect of T on LSIF and SSIF under a) varying traffic and b) very low traffic load.

Minimum sniff interval T

(a)

u = 2, α = 0.7, δ = 0.5, Bmax = 45, with varying traffic,
and 5 slaves in the piconet

200 25050
0.20

0.30

Th
ro

ug
hp

ut
(%

 s
lo

ts
 u

se
d)

150100

0.40

0.50

0.60

0.70

0.80

AA
AS_VSI
AS_VAW
LSIF
SSIF

Minimum sniff interval T

(b)

u = 2, α = 0.7, δ = 0.5, Bmax = 45, with very low traffic,
and 5 slaves in the piconet

650 85050
0.00

0.10

Th
ro

ug
hp

ut
(%

 s
lo

ts
 u

se
d)

750550450150 250 350

0.20

0.30

0.40

0.50

0.60

0.80

0.70
AA
AS_VSI
AS_VAW
LSIF
SSIF

� Figure 9. Effect of Bmax under varying traffic load.

Buffer size Bmax

T = 100, u = 2, α = 0.7, δ = 0.5, with varying traffic,
and 5 slaves in the piconet

17015010
25,000

Po
w

er
 c

on
su

m
pt

io
n

65,000

105,000

145,000

185,000

225,000

13011090705030

Buffer size Bmax

(a) (b)

T = 100, u = 2, α = 0.7, δ = 0.5, with varying traffic,
and 5 slaves in the piconet

17015010
0.1

0.2

Th
ro

ug
hp

ut
(%

 s
lo

ts
 u

se
d)

0.3

0.4

0.5

0.6

0.7

0.8

13011090705030

AA
AS_VSI
AS_VAW
LSIF
SSIF

AA
AS_VSI
AS_VAW
LSIF
SSIF

IEEE Wireless Communications • December 2002 103

Council, Taiwan (contract no. NSC90-2213-E009-
154) for financially supporting this research.

REFERENCES
[1] Bluetooth SIG http://www.bluetooth.com, “Bluetooth

Specification v1.1,” Feb. 2001.
[2] J. C. Haartsen, “The Bluetooth Radio System,” IEEE Pers.

Commun., Feb. 2000.
[3] J. C. Haartsen and S. Mattisson, “Bluetooth — A New

Low-Power Radio Interface Providing Short-Range Con-
nectivity,” Proc. IEEE, vol. 88, Oct. 2000.

[4] R. Bruno, M. Conti, and E. Gregori, “WLAN Technolo-
gies for Mobile Ad Hoc Networks,” IEEE Proc. 34th
Hawaii Int’l. Conf. Sys. Sci., 2001.

[5] S.-L. Wu, Y.-C. Tseng, and J.-P. Sheu, “Intelligent Medi-
um Access for Mobile Ad Hoc Networks with Busy
Tones and Power Control,” IEEE JSAC, vol. 18, Sept.,
2000, pp. 1647–57.

[6] R. Ramanathan and R. Rosales-Hain, “Topology Control
of Multihop Wireless Networks Using Transmit Power
Adjustment,” IEEE INFOCOM, 2000, pp. 404–13.

[7] C.-F. Huang et al., “Increasing the Throughput of Multi-
hop Packet Radio Networks with Power Adjustment,”
Int’l. Conf. Comp. Commun. and Nets., 2001.

[8] J. H. Ryu, S. Song, and D.-H. Cho, “A Power-Saving
Multicast Routing Scheme in 2-tir Hierarchical Mobile
Ad-Hoc Networks,” IEEE VTC, vol. 4, 2000, pp. 1974–78.

[9] S. Singh, M. Woo, and C. S. Raghavendra, “Power-
Aware Routing in Mobile Ad Hoc Networks,” Int’l.
Conf. Mobile Comp. and Net., 1998, pp. 181–90.

[10] H. Woesner et al., “Power-Saving Mechanisms in Emerg-
ing Standards for Wireless LANs: The MAC Level Perspec-
tive,” IEEE Pers. Commun., June 1998, pp. 40–48.

[11] I. Chakrabory et al., “MAC Scheduling Policies with
Reduced Power Consumption and Bounded Packet
Delays for Centrally Controlled TDD Wireless Networks,”
IEEE ICC, 2001.

[12] A. Das et al., “Enhancing Performance of Asyn-
chronous Data Traffic over the Bluetooth Wireless Ad-
hoc Network,” IEEE INFOCOM, 2001.

[13] S. Garg, M. Kalia, and R. Shorey, “MAC Scheduling
Policies for Power Optimization in Bluetooth: A Master
Driven TDD Wireless System,” IEEE VTC, 2000.

[14] M. Kalia, D. Bansal, and R. Shorey, “Data Scheduling
and SAR for Bluetooth MAC,” IEEE VTC, 2000.

BIOGRAPHIES
TING-YU LIN (tylin@csie.nctu.edu.tw) received her B.S.
degree in computer science from National Chiao-Tung Uni-
versity, Taiwan, in 1996. She is currently a Ph.D. candidate
at the Department of Computer Science and Information
Engineering at the same university. Her research interests
include wireless communication, mobile computing, per-
sonal-area networks, and energy conservation.

YU-CHEE TSENG (yctseng@csie.nctu.edu.tw) is currently a full
professor in the Department of Computer Science and
Information Engineering, National Chiao-Tung University,
Taiwan. He has served as a Program Committee Member
for several international conferences and as a Guest Editor
for several journals, including IEEE Transactions on Com-
puters, Wireless Communications and Mobile Computing,
Wireless Networks, and Journal of Internet Technology. His
research interests include wireless communication, network
security, parallel and distributed computing, and computer
architecture. He is a member of the IEEE Computer Society.

Our simulation results
have indicated that,
with proper settings
and buffer spaces,

the protocol can
potentially improve

network throughput,
while reducing power

consumption,
compared to a naive

always active
round-robin protocol.

